Simultaneous elastic and electromechanical imaging by scanning probe microscopy: Theory and applications to ferroelectric and biological materials
نویسندگان
چکیده
An approach for combined imaging of elastic and electromechanical properties of materials, referred to as piezoacoustic scanning probe microscopy PA-SPM , is presented. Applicability of this technique for elastic and electromechanical imaging with nanoscale resolution in such dissimilar materials as ferroelectrics and biological tissues is demonstrated. The PA-SPM signal formation is analyzed based on the theory of nanoelectromechanics of piezoelectric indentation and signal sensitivity to materials properties and imaging conditions. It is shown that simultaneous measurements of local indentation stiffness and indentation piezocoefficient provide the most complete description of the local electroelastic properties for transversally isotropic materials, thus making piezoacoustic SPM a comprehensive imaging and analysis tool. The contrast formation mechanism in the low frequency regime is described in terms of tip-surface contact mechanics. Signal generation volumes for electromechanical and elastic signals are determined and relative sensitivity of piezoresponse force microscopy PFM and atomic force acoustic microscopy AFAM for topographic cross-talk is established. © 2005 American Vacuum Society. DOI: 10.1116/1.2052714
منابع مشابه
Probing local electromechanical effects in highly conductive electrolytes.
The functionality of a variety of materials and devices is strongly coupled with electromechanical effects which can be used to characterize their functionality. Of high interest is the investigation of these electromechanical effects on the nanoscale which can be achieved by using scanning probe microscopy. Here, an electrical bias is applied locally to the scanning probe tip, and the mechanic...
متن کاملSol-Gel Synthesis and Piezoelectric and Structural Properties of Zr –rich PZT Nanoparticles
Lead zirconate titanate (PZT) nanopowders with spherical-shaped morphology, perovskite structure and an average size of 20 nm were successfully synthesized. The prepared PZT nanopowders were characterized by differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), Energy dispersive X-ray (EDS) and Transmission electron microscopy (TEM) technique. Single-...
متن کاملIonically-mediated electromechanical hysteresis in transition metal oxides.
Nanoscale electromechanical activity, remanent polarization states, and hysteresis loops in paraelectric TiO(2) and SrTiO(3) thin films are observed using scanning probe microscopy. The coupling between the ionic dynamics and incipient ferroelectricity in these materials is analyzed using extended Landau-Ginzburg-Devonshire (LGD) theory. The possible origins of electromechanical coupling includ...
متن کاملScanning impedance microscopy (SIM): A novel approach for AC transport imaging
Scanning Impedance Microscopy (SIM) is one of the novel scanning probe microscopy (SPM) techniques, which has been developed to taking image from sample surface, providing quantitative information with high lateral resolution on the interface capacitance, and investigating the local capacitance–voltage (C–V) behavior of the interface and AC transport properties. The SIM is an ordinary AFM equip...
متن کاملHigh resolution electromechanical imaging of ferroelectric materials in a liquid environment by piezoresponse force microscopy.
High-resolution imaging of ferroelectric materials using piezoresponse force microscopy (PFM) is demonstrated in an aqueous environment. The elimination of both long-range electrostatic forces and capillary interactions results in a localization of the ac field to the tip-surface junction and allows the tip-surface contact area to be controlled. This approach results in spatial resolutions appr...
متن کامل